【分享帖】从STM32开始的RoboMaster生活:进阶篇 III [UART & USART]
本文已经同步发布于作者部署的私人博客
为了更好的排版和观看体验


从STM32开始的RoboMaster生活:进阶篇 III [UART & USART]
1.0 什么是UART和USART?有什么区别嘛?
1.1 UART定义
Universal Asynchronous Receiver/Transmitter:通用异步收发传输器,是一种串行异步收发协议,应用十分广泛。UART工作原理是将数据的二进制位一位一位的进行传输。在UART通讯协议中信号线上的状态位高电平代表’1’低电平代表’0’。当然两个设备使用UART串口通讯时,必须先约定好传输速率和一些数据位。分类属于并行传输,通常1字节数据的8位同时传输,结束后再继续传第2个字节,如同波浪一般,一波一波传输。
1.2 UART与USART的区别

  • UART

​ 从图上可以看出整个传输过程。首先,在没有数据传输任务的时候,互相之间都是高电平 ( 1 ) ,然后,在有传输任务的时候,有1.5字节宽的起始信号,然后开始传输真正的信号,结束任务后,再给1.5字节宽的结束信号,最后回归没有数据传输的高电平。

  • USART <– Universal Synchronous/Asynchronous Receiver/Transmitter 通用同步异步接收发送器

​ USART是UART的升级版,区别在于多了CLK线,在CLK没有信号的时候,就表明没有数据传输任务,有CLK信号的时候,就是正在传输信号,并且CLK提供了时钟同步功能,效验也更精确。但在实际使用的时候,其实并不会感觉UART和USART有很大的区别,除非接触非常底层的东西。
2.0 UART和USART在哪里?

  • UART


    • UART7

    尽管大疆第一个图中标明的是USART7,但是其实只能使用异步通讯,也就是普通的UART。

    • UART8

    尽管大疆第一个图中标明的是USART8,但是其实只能使用异步通讯,也就是普通的UART。
  • USART


    • USART6

  • DJI ON BOARD SDK


    • USART3

    这个是大疆预留的官方接口,与一般的USART的接线不同,不能直接使用,也不推荐使用。

3.0 UART和USART有啥用?

  • 与PC端通讯
    可以作为Debug的一种手段,或者监控数据流通的方法。

  • 与其他设备通讯
    比如两个MCU互相通讯,也就是作为主从机来使用。

4.0 UART和USART的两种不同使用模式
4.1 Polling[code]HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout);[/code]

  • 参数


    • huart:指向UART引脚配置结构体

    • pData:指向需要传输的字符串

    • Size:传输数据的字节大小

    • Timeout:最大等待完成时限,单位为毫秒,也可以用HAL_MAX_DELAY来直接无限等待

  • 返回值


    • HAL_StatusTypeDef:如果传输完成,返回HAL_OK;如果没有在时限内完成,返回HAL_TIMEOUT;如果在传输出错,返回HAL_ERROR;如果该UART正在被占用,返回HAL_BUSY


[code]HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout);[/code]

  • 参数


    • huart:指向UART引脚配置结构体

    • pData:指向需要传输的字符串

    • Size:传输数据的字节大小

    • Timeout:最大等待完成时限,单位为毫秒,也可以用HAL_MAX_DELAY来直接无限等待

  • 返回值


    • HAL_StatusTypeDef:如果传输完成,返回HAL_OK;如果没有在时限内完成,返回HAL_TIMEOUT;如果在传输出错,返回HAL_ERROR;如果该UART正在被占用,返回HAL_BUSY


4.2 Interrupt
[code]HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);[/code]

  • 参数


    • huart:指向UART引脚配置结构体

    • pData:指向需要传输的字符串

    • Size:传输数据的字节大小

  • 返回值


    • HAL_StatusTypeDef:如果传输完成,返回HAL_OK;如果在传输出错,返回HAL_ERROR;如果该UART正在被占用,返回HAL_BUSY


[code]HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);[/code]

  • 参数


    • huart:指向UART引脚配置结构体

    • pData:指向需要传输的字符串

    • Size:传输数据的字节大小

  • 返回值


    • HAL_StatusTypeDef:如果传输完成,返回HAL_OK;如果在传输出错,返回HAL_ERROR;如果该UART正在被占用,返回HAL_BUSY

这里的函数并不是直接接收数据,而是表明开启UART的Interrupt模式接收完数据后,该UART的Interrupt模式会自动关闭,需要再手动开启

[code]void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) {
......
}[/code]

  • 在写代码的时候,在main.c中创建HAL_UART_TxCpltCallback函数

  • 在该函数中填写UART发送结束后,需要执行的代码

[code]void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) {
......
}[/code]

  • 在写代码的时候,在main.c中创建HAL_UART_RxCpltCallback函数

  • 在该函数中填写UART接收结束后,需要执行的代码

5.0 练习项目
5.1 项目简介

  • 电脑控制LED灯:在电脑上按下r,反转红色LED状态,按下g,反转绿色LED状态,按下1~8,反转对应的LED1~8的状态,并且返回打印反转的LED灯号

5.2 芯片配置

  • 芯片视角


  • GPIO配置列表


  • NVIC配置列表

5.3 项目代码

  • 我只放了main.c,完整的工程文件可以在这里找到!

  • Src/main.c

[code]/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
*

<center>© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center>


*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "string.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart7;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_UART7_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
char readBuf[1];
/* USER CODE END 0 */

/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU Configuration--------------------------------------------------------*/

/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();

/* USER CODE BEGIN Init */

/* USER CODE END Init */

/* Configure the system clock */
SystemClock_Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */

/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_UART7_Init();
/* USER CODE BEGIN 2 */
HAL_UART_Receive_IT(&huart7,(uint8_t*)readBuf,1);
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}

/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3);
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}

/**
* @brief UART7 Initialization Function
* @param None
* @retval None
*/
static void MX_UART7_Init(void)
{

/* USER CODE BEGIN UART7_Init 0 */

/* USER CODE END UART7_Init 0 */

/* USER CODE BEGIN UART7_Init 1 */

/* USER CODE END UART7_Init 1 */
huart7.Instance = UART7;
huart7.Init.BaudRate = 115200;
huart7.Init.WordLength = UART_WORDLENGTH_8B;
huart7.Init.StopBits = UART_STOPBITS_1;
huart7.Init.Parity = UART_PARITY_NONE;
huart7.Init.Mode = UART_MODE_TX_RX;
huart7.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart7.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart7) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN UART7_Init 2 */

/* USER CODE END UART7_Init 2 */

}

/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};

/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();

/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOG, LD8_Pin|LD7_Pin|LD6_Pin|LD5_Pin
|LD4_Pin|LD3_Pin|LD2_Pin|LD1_Pin, GPIO_PIN_RESET);

/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD_RED_GPIO_Port, LD_RED_Pin, GPIO_PIN_RESET);

/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD_GREEN_GPIO_Port, LD_GREEN_Pin, GPIO_PIN_RESET);

/*Configure GPIO pins : LD8_Pin LD7_Pin LD6_Pin LD5_Pin
LD4_Pin LD3_Pin LD2_Pin LD1_Pin */
GPIO_InitStruct.Pin = LD8_Pin|LD7_Pin|LD6_Pin|LD5_Pin
|LD4_Pin|LD3_Pin|LD2_Pin|LD1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);

/*Configure GPIO pin : LD_RED_Pin */
GPIO_InitStruct.Pin = LD_RED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD_RED_GPIO_Port, &GPIO_InitStruct);

/*Configure GPIO pin : LD_GREEN_Pin */
GPIO_InitStruct.Pin = LD_GREEN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD_GREEN_GPIO_Port, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle){
switch(readBuf[0]){
case 'r':
HAL_GPIO_TogglePin(LD_RED_GPIO_Port,LD_RED_Pin);
HAL_UART_Transmit(&huart7,(uint8_t*)"LED_RED!\r\n",strlen("LED_RED!\r\n"),HAL_MAX_DELAY);
break;
case 'g':
HAL_GPIO_TogglePin(LD_GREEN_GPIO_Port,LD_GREEN_Pin);
HAL_UART_Transmit(&huart7,(uint8_t*)"LED_GREEN!\r\n",strlen("LED_GREEN!\r\n"),HAL_MAX_DELAY);
break;
case '1':
HAL_GPIO_TogglePin(LD1_GPIO_Port,LD1_Pin);
HAL_UART_Transmit(&huart7,(uint8_t*)"LED1!\r\n",strlen("LED1!\r\n"),HAL_MAX_DELAY);
break;
case '2':
HAL_GPIO_TogglePin(LD2_GPIO_Port,LD2_Pin);
HAL_UART_Transmit(&huart7,(uint8_t*)"LED2!\r\n",strlen("LED2!\r\n"),HAL_MAX_DELAY);
break;
case '3':
HAL_GPIO_TogglePin(LD3_GPIO_Port,LD3_Pin);
HAL_UART_Transmit(&huart7,(uint8_t*)"LED3!\r\n",strlen("LED3!\r\n"),HAL_MAX_DELAY);
break;
case '4':
HAL_GPIO_TogglePin(LD4_GPIO_Port,LD4_Pin);
HAL_UART_Transmit(&huart7,(uint8_t*)"LED4!\r\n",strlen("LED4!\r\n"),HAL_MAX_DELAY);
break;
case '5':
HAL_GPIO_TogglePin(LD5_GPIO_Port,LD5_Pin);
HAL_UART_Transmit(&huart7,(uint8_t*)"LED5!\r\n",strlen("LED5!\r\n"),HAL_MAX_DELAY);
break;
case '6':
HAL_GPIO_TogglePin(LD6_GPIO_Port,LD6_Pin);
HAL_UART_Transmit(&huart7,(uint8_t*)"LED6!\r\n",strlen("LED6!\r\n"),HAL_MAX_DELAY);
break;
case '7':
HAL_GPIO_TogglePin(LD7_GPIO_Port,LD7_Pin);
HAL_UART_Transmit(&huart7,(uint8_t*)"LED7!\r\n",strlen("LED7!\r\n"),HAL_MAX_DELAY);
break;
case '8':
HAL_GPIO_TogglePin(LD8_GPIO_Port,LD8_Pin);
HAL_UART_Transmit(&huart7,(uint8_t*)"LED8!\r\n",strlen("LED8!\r\n"),HAL_MAX_DELAY);
break;
}
HAL_UART_Receive_IT(&huart7,(uint8_t*)readBuf,1);
}
/* USER CODE END 4 */

/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */

/* USER CODE END Error_Handler_Debug */
}

#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/[/code]5.4 效果展示

[media=x,760,570]http://player.bilibili.com/player.html?aid=96401006&cid=164568509?page=1[/media]
请问这篇文章对你有用吗?
【分享帖】从STM32开始的RoboMaster生活:进阶篇 III [UART & USART]
所有评论
暂无更多
暂无更多
关于作者
Alchemic Ronin
Alchemic Ronin
0 关注Ta
0 文章
0 经验值
0 获赞